37 research outputs found

    On Mechanical and Electrical Coupling Determination at Piezoelectric Harvester by Customized Algorithm Modeling and Measurable Properties

    Get PDF
    Piezoelectric harvesters use the actuation potential of the piezoelectric material to transform mechanical and vibrational energies into electrical power, scavenging energy from their environment. Few research has been focused on the development and understanding of the piezoelectric harvesters from the material themselves and the real piezoelectric and mechanical properties of the harvester. In the present work, the authors propose a behavior real model based on the experimentally measured electromechanical parameters of a homemade PZT bimorph harvester with the aim to predict its Vrms output. To adjust the harvester behavior, an iterative customized algorithm has been developed in order to adapt the electromechanical coupling coefficient, finding the relationship between the harvester actuator and generator behavior. It has been demonstrated that the harvester adapts its elongation and its piezoelectric coefficients combining the effect of the applied mechanical strain and the electrical behavior as a more realistic behavior due to the electromechanical nature of the material. The complex rms voltage output of the homemade bimorph harvester in the frequency domain has been successfully reproduced by the proposed model. The Behavior Real Model, BRM, developed could become a powerful tool for the design and manufacturing of a piezoelectric harvester based on its customized dimensions, configuration, and the piezoelectric properties of the smart materials.This research was funded by the Basque Government, grant number KK-2021/00082-µ4IIoT, and by the European Commission, grant number 869884- RECLAIM

    Low-Cost Piezoelectric Sensors for Time Domain Load Monitoring of Metallic Structures During Operational and Maintenance Processes

    Get PDF
    The versatility of piezoelectric sensors in measurement techniques and their performance in applications has given rise to an increased interest in their use for structural and manufacturing component monitoring. They enable wireless and sensor network solutions to be developed in order to directly integrate the sensors into machines, fixtures and tools. Piezoelectric sensors increasingly compete with strain-gauges due to their wide operational temperature range, load and strain sensing accuracy, low power consumption and low cost. This research sets out the use of piezoelectric sensors for real-time monitoring of mechanical strength in metallic structures in the ongoing operational control of machinery components. The behaviour of aluminium and steel structures under flexural strength was studied using piezoelectric sensors. Variations in structural behaviour and geometry were measured, and the load and μstrains during operational conditions were quantified in the time domain at a specific frequency. The lead zirconium titanate (PZT) sensors were able to distinguish between material types and thicknesses. Moreover, this work covers frequency selection and optimisation from 20 Hz to 300 kHz. Significant differences in terms of optimal operating frequencies and sensitivity were found in both structures. The influence of the PZT voltage applied was assessed to reduce power consumption without signal loss, and calibration to μstrains and loads was performed.This research was funded by Basque Government, grant number KK-2019/00051-SMARTRESNAK and by the European Commission, grant number 869884- RECLAIM

    Electrical Response Analysis of a Piezoelectric Energy Harvester Power Source Based on Electromechanical Parameters

    Get PDF
    A piezoelectric energy harvester generator is a device capable of transforming environmental mechanical energy into electrical energy. The piezoelectric electromechanical parameters determine the maximum electrical power which is able to be transferred to an electric load. In this research work, an exhaustive study of the electromechanical parameters related to the piezoelectric material is carried out, modeling them as components of an electrical circuit, in order to analyze their influence on the transmitted power. On the other hand, some electrical loads are simulated to determine different matrix scenarios for a model developed by state-space equations in the Laplace transform domain. The results obtained have allowed to know how the piezoelectric material properties and mechanical characteristics influence the electrical power output of the energy harvester generator and the energy transmission behavior for different electric loads. The conclusions show how the different electromechanical parameters are related to each other, and how their combination transforms the mechanical environmental energy into the required electrical energy. The novelty of this research is the presentation of a model capable of obtaining the optimized working point of the harvester, taking into account not only the electric loads and current demands but also the piezoelectric material parameters.This research was funded by the European Commission, grant number 869884-RECLAIM

    Piezoelectric Actuators Mode of Vibration Influence on Energy Harvesting Applications

    Get PDF
    At this research, the authors have been focused on the mechanical and vibrational energy harvesting system with piezoelectric actuators. By studying the characteristics vibration modes of the piezoelectric harvester and the clamping setup configuration, a design optimization has been carried out in order to analized its influence on energy scavenging

    The OTELO survey: A case study of [O III] lambda 4959,5007 emitters at z=0.83

    Get PDF
    Context. The OSIRIS Tunable Filter Emission Line Object (OTELO) survey is a very deep, blind exploration of a selected region of the Extended Groth Strip and is designed for finding emission-line sources (ELSs). The survey design, observations, data reduction, astrometry, and photometry, as well as the correlation with ancillary data used to obtain a final catalogue, including photo-z estimates and a preliminary selection of ELS, were described in a previous contribution. Aims. Here, we aim to determine the main properties and luminosity function (LF) of the [O III] ELS sample of OTELO as a scientific demonstration of its capabilities, advantages, and complementarity with respect to other surveys. Methods. The selection and analysis procedures of ELS candidates obtained using tunable filter pseudo-spectra are described. We performed simulations in the parameter space of the survey to obtain emission-line detection probabilities. Relevant characteristics of [O III] emitters and the LF ([O III]), including the main selection biases and uncertainties, are presented. Results. From 541 preliminary emission-line source candidates selected around z = 0.8, a total of 184 sources were confirmed as [O III] emitters. Consistent with simulations, the minimum detectable line flux and equivalent width in this ELS sample are ∼5 × 10−19 erg s−1 cm2 and ∼6 Å, respectively. We are able to constrain the faint-end slope (α = −1.03 ± 0.08) of the observed LF ([O III]) at a mean redshift of z = 0.83. This LF reaches values that are approximately ten times lower than those from other surveys. The vast majority (84%) of the morphologically classified [O III] ELSs are disc-like sources, and 87% of this sample is comprised of galaxies with stellar masses of M⋆ <  1010 M⊙

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link
    corecore